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1.  Introduction. The most general differential equatiou to which the

c_lyna.m:lcal, description of the title applies is
x + g(x) = p(t), . ' | (1.1)

where dots denote differentiation with respect to t. The essential problem

for th.{s equation is to determine the behaviour of solutions a5 t —res

) Vhen we a.ttack this problem, the most obvious question ‘18 whether every solution B
- is bounded as t -» 3 this question is open except when g(x) is8 linear.
(Moser's methods in (5) and €9)) raise hopes that when g(x)/x -« 1t can be
. enswered affirmatively.) In the special case when p(t) 1s periodic, (1.2)
’ 9 ‘ w have per;[od_ic sblutions; it 1s clear that any such solution is bounded,
\ and 1t is worth mentioniﬁg that finding periodic solutions is the easiest way
‘of finding particular bounded ones. So long as the boundedness problen 1s
unsgived, there is a s;pecié.l interest in finding a large class of particular
| bounded solutions; if we ylmow such & class then, although we ca.npot say vhéther

the general solution is bounded or not, we can make the imprecise comment that
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suggests that 1f gx)/x 2w as |x| oo,

. ;e(t) has least period 2m.

either the general solution is in fact bounded or the structure of the whole

.set of solutions is quite complicated

JIn two previous papers of the same title, (“2‘2 and (2')’, T have considered

'a tractable special case of (1.1). A heuristic argument given in (3)\

(1.1) has all its solutions

bounded and has some peric-ﬁc solutions when p(t) 1is periodic; by:sﬁecializing

g(x) ~ to be 2x3, we satisfy this condition and simplify our calculations as

far as possible. If p(t) is even, (1.1) 1s‘una.ffec-ted_by changing t dinto

“«t; 4f p(t) is both even and periodic, we obtain the simple criterion for

‘a period:lc solution given as Theorem A in §2. When we a.dopt both these

specializations we are 1ed to the special equa.tion

% 4+ 2x0 = e(t); ,(1.2)

‘here e(t) ' is written to ahphaSize the assumed evenness, and we shall assume

In this paper I continue the discussion of (1.2)

and complete the work foreshadowed in (2)

, In point of method, this paper's principal contri‘bution is to develop a
‘;teclmique for making certain estimations: it will eppear that we need to ’f

‘ 'approad.mate certain partial deriva.tives connected with (1.2). We state a con- ,,-’:

| /

venient form of these estimations as Theorem T; it is not practicable to (’

| emmciate Theorem 7 until we reach §3, since we sha.ll need to introduce nota.tion.
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,sc,..;ét Ces In (2) 1t was shom that (1.2) hae an infinite class i‘éor "large"
:periodic solutions whose periods are not "too large" compared with their
ampl:ltudes.. Although these sélutions could te described by .giving the numbé:c;

- of their extrema in a period they could not be uniquely characterized in

this way. In this paper, under stronger hypotheses, we shall show tha.t' a \
large sub-class of f can be characterized in this way. Our calculations |

" will lead us to & long statement (The: : 8, enunciated in §3); it is more |
suifa.ble here to give a simpler but typical result which we need in order to \

O enunciate Theorem 10, 1If, as before, we write @ for the constant defined

by (2.3) and (2.1) below we can state:

" THEOREM 9. For each large k there is, under the assumption that

e(t) bas a continuous third derivative, Just ome solution xk(t) of (1.2)

~ for which

(1) 'tk(o} =0 and xk(t) has ;gerxodérr,

(11) x(t) hss, in 0 st <2m k positive maxima, k negative

- "minima and no other stationary points, and

- (111) x,(0) =k?n+g(ls"2)- & ko,

Further, every solution of (1.2) which tas period 2m, %(0) =0 and x(0)

large is an xk(t) for a suitable k.
In ('22 » by a process of interpolation between members of 6 , it was

shown that (1.2) has periodic solutions not in f whose periods may be arbitrarily

-
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- long coupared with their smplitudes. About individual solutions we obtained
less information thé.n'abcut those of K but we did obtain results about the
- Merlacing of solutions, most naturally set out in terms of fixed points of

'the topological transformation
S T(a) b) = (3(2”3 a,b; 0), i(?n’; a,b; 0)),

-where x(t; a,b; 0) 1is the solution of (1.2) with x(0) =a, X0) =1,
If, es in (3), ve vrite 'Fk for the point (ak, 0) of the (a, b)-plane,
‘where & = xk(O) » Ve can translate"fheorem 9 ipto the language of transforma-

tions as: . ' . ' - -

COROLLARY to Theorem 9. A For each large k there is, under the assumption ;

"~ that e(t) has a continuous third derivative, just one fixed point F, of

T on the n-axis near (kmo, 0). Further, every fixed point of large abscissa

o S ,
on this axis is an Fk‘

We cen now state this paper’s principal result on periodic solutions of (1.2)::

THEOREM 10.. Under the assumption that e(t) has a continucus third

.. derivative there is & constant positive integer 05 such that, vhen k 1s

N {\ e (1) for each m with 2sm s (x - 05)2, exactly ‘¢{m) fixed | \

: points of order m of T ]_.ie on the segment Fk Fk+l’ ' say (frOm left to right) ‘



- then P_ l1es to the left of fs,m, » Yhe convention P,

-

le’"'_" Pm,... » Bpaw vhere s ms thréugh thg numt?ers less than m and

- prime to it;

T (1) i sfa end s'/m' ere irreducible fractions for which

. ' |
0% 2<5sY,

oL~ Fe P11 = Fen

being edopted; and N :

3 (ii‘i) the’solution (necessa.rily of lewst per_iod 2nﬂr) to which

sm

- P corresponds has mk + 5 positive maxima and mk + 5 negative minima in )

this perfod.

Tt is important to point out that, in the quite long approximate calcula-

tions which lead to Theorem 7, we do not require the evenness of e(t), and

from this remark it follows that we may, without lengthening the.discussion,

choose an enunciaticn of Theorem T which applies to the equation

Teed -0, - - @y

where p(t) has least period 2r but is not necessarily even. Such an

emunciation is adopted ixi §3. It is evident that the greater generality cannct

be exploited .in the papers of this series, since our eriterion for periodic solu-

" tioms of (1.2) depends directly on the evenness of e(t). In a further paper

-
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Q;) , however, I shall obtain a criterion for periodic solutions of (1.3) and

then show that the estimates conta.ined in Theorem T can be applied to prove -

_that (1. 3) also hes &n infinity of periodic solutions.

- Except in §9, this paper does not refer to (2), Unlike (M} it
requires that some of the detailed results of gg) should be quoted. . A summary
of these results apd of the notations which they Justify is given in_§2; if
these statements are accepted, this paper can be read independently of ( 2).
Once the necessary notation from (g) has been re-introduced we can, in §3,

4 ‘exr.inciate Theorems T a.nd. 8. Also in §3 we describe tﬁe genexral plan of the ‘
‘ calculatiozxs which occupy §§4 to 7 and lead to Theorem ’{. In §8 ve prove

Theorems 8 and 9.

 In §9 we establish I'heorem 10 which depends on Theorems 5 and 6 of @
At the 'beginning of §9 we give a sunmary of the results needed from (3); if

. these are accepted this gsection can be read independently of QL.

It 1s natural to ask how far the methods used in discussing ( 1.2) can

-'be ea.rried over to the equation
x + g{x) = e(t) . | o - (1.8)

It :I.s stra.ightforward but tedious to check that the approximate ca.lculat.ions of

u end this paper can be closely copled when g(x) 1s & constant multiple of



_ lea' sgn X, @ being g:;'eater than 2; the estimates 80 obtained can be

- applied to give resx.lts about periodic solutions, more or less detailed
according as ¢ 1is large or small. The more interesting questions are whether
: we can arrange our calculations satisfactorily undex the conditions (occurring
separately or together): (1) g(x) does not always increase, (11) Ja(x)]

has very different rates of increase 88 X - &nd X - -, and (1i1)

&(x)/x 1increases verjr slowly. Haxrvey Q,..), has considered the co.se when g(x)
behaves as a);ﬁolynomial for large |x|. Assuming that g(x) is

ﬂlnz

z anx“' or z bmlxlh
= = ,

rof x >R i> 0 or x<-R respectivol&, and requj.ring that n, > 1, n, > 1,
he shows that strong enough estimates can be obtainéd by the methods of (g)

to deduce ihe existence of periodic solutions. Even in this polynomial case
condition (11) above shows :Ltself as awkward to handle: to allow the possibility
that Rt =+ o, cow:plicates Harvey's work considerably and when, 1n fact,

n1+ nz, his estimates become weaker.

| It s easier to state how far the methods of (‘;)_ could de applied to
: (l.h) If some periodic solutions had ah-eady been found by the methods used
in (g) » then, provided that g(x) was strictly increasing, we should need
‘ only verbal cha.nges in m to show that we could interpolate an 1nf1n1ty of

B




periodic sol_ut:l.on_s ‘between them, and to show that any interpolated solution
vas char&cteriéd by the pumber of maxima teken in & period by the difference
between it and & standard periodic solution. If, however, g(x) vas not
Qtnctly 1nc.z;easing,. this chéraeterization would fail since Lemma 8 of (3),
vould o longer hold; it would still be possible %o interpolate periodic

vld;l_\tbiOns. but the work in &3) would have to be modified in & number of points.

It wiil be convenient to continue the numbering of theorems from (2)

and '(”) but to begin a new numbering of lemmas, sections and equationms.

2. Known properties of (1.2) and (1.3). We shall carry over the notational
'cénventions of (2) so that, in particular, dashes are mot used as symbols of
differentiation and, to avoid having two suffixes with quite different meanings,
epeciel velues of b eve labelled es n: or h:, related solutions of (1.2)
being labelled x (t), *(t)

Although the estimations carried out in (2) vere presented for (1.2) ,

-. the evenness of e(t) was not needed in the work. Without 1ndividua.l mention,
.we sghall quote estimates from (g_) so as to apply to (1-3), that is, v(e shall
wvrite p(t) for e(t) in them, and, correspondingly, we shall now write

| "x(t; 8,b; t ) for the solution of (1.3) with x(to) = a, &(to) = b, This

.'m;plies that we are assuming about p{t):

(1) p(t) is not identically zero and has least period 2w,

| () Jﬁ’ p(t)at =0, and

?
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_ (93) :p(t) is differentiable, p(t) 13 continuous,
I=(t)] <E, ]p(t)[ < E.

We can conveniently recall the notation and motivation of our earlier

work by‘stating some simple properties of

r+2y3-o, » - | L (2.1)
a differential equation which has the first integral

3+t =, o o o (2.2)
Evidently every solution of (2. 2) 1s per:lodic with least period 2&7h
where we have written

4= fo (1-uhFa, | - (2.3)
and this 1s to say that the solution of (2.1) with 7(0) =a and (0) =b
is periodic with least period 2 & (b2 + ah) « If m is a positive integer,

~ there are solutions of (2;1) having 2mr as a.period (nmot in general the least

pe_riod) ; 1f we suppose X and 8 to be integers and write

;ﬂ@,} o ew

ve see, in particular, that the solution of (2 1) with 3(0) =0 and

i vy(O) = (k + s/m)a) has 2m1r as & period. We shall be concerned with similarly
i ? 1-- . ’ . .
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determined solutions of (1.2) and (1.3).

Any solution of (1.3) has an infinity of stationary points. So long

v s,

" as a solui:iOn remains "1a.rge" its stationary values are successively positive

maxima and nega.tive minima; in such a succession we write P q‘, <p8,... for

- e s
AR AR wred

the va.].ues of t giving the mexima and %o <p6, Porece for the values giving
) ' minima. We descri‘be an isterval Yy s t = By + 4 258 cycle, and write :
L .qw + 1 qw 4 3 for the intermediate values of t at which x(t) =0. 1If

. P qb,... ’9Q,, Bare e.l_'l. defined we say that the solution describes n gxg__g_s_

in the interval cpo =t s q&n’, and we extend this la.nguage by talking of
__ half-cycles and then saying that the solution describes 2n cycles in
tp. st s‘ qhn. -oa' in qbn £t % q . Corresponding to any solution x(t) of
- (1.3) ve define h (t) = '2(1:) +x (t), we then ha.ve as an analogue of (2.2) the

identity

E'.-l fc.J -1; " . : hh(t) =hh(to) + aP(t')i(t')dt'f o | (2.5)4

Whenever cp.- is defined we define h as the positive number for which
h =h (cpa)

. Consider a solution with a stationary value where t = P and write

:fli f.'.e.uf.j&

ey gD, SR N T

x(<p°) o To express the requirement that the solution should ‘be iarge enough
for D and qh to be defined, wve introduce an r and prescribe that

ho >r. To express the requirement that the solution should remain la.rge for a

""'...-‘
.
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cbnsigerable interval of t we have some choice of prescriptions. We

choose the form that, given s positive (g, there is an R = R(p) such that,
vh?n- h, >R, the functions h, = th(ho’ q;o) and @, = qbn(h"), cpo) are
defined for all ¢, and all n s phz, and, further, they are differentiable

‘t\mctibns of b, and B It is clearly open to us to discuss a large

solution of (1.3) over & range of t by finding estimates for h2n and .qbn

in terms.of h, end .. Inside a cyéle we have that, for large h,,

SRS LESR L

L

In a succession of cycles we have that, if n = p

5 .
ho’ then

gy o et o)) + o

and, unifornly in %St S B » .

' Vhere the constants implied in the O-terms depend only.on py wpot on n.

ER\CER ST ORI

(2.6).

(2.7)
(2.8)

| '(2.9)

Ve vere éoncernéd* in (2) and shall be concerned here with values of

ve take an even e(t), we introduce the estimation of b

v *Although (2.10) presents itself, in (2) and the present paper, only because
before discussing the

evenness, This is desirable since the estimation applies with only trivial

changes to the equation ¢ = 2ur wvhich we shall meet in ().



h, exd cambinations of positive integers n and m for which

, "Evidez_:nt_ly,’_ when n = mk + s, (2.8) gives mr as the principal term in

qkn((k +s/m)w, 0); 1f k 1s "large", m not "too lafge" compared with it
and 8 <m it is straightforward to use the estimations gbove to' show that
there 1is an h: near (k + s/m)o which satisfies (2.10), but it is essential
to make the ordez_" of chbice ¢clear, A convenient order is to suppose a positive

o . A a;signed,_ determine a C, =.ck(A) and a l:5 = kj(A) , and then zie_quire"_ |

" ‘))“I__'.’A’ K>k ed 08s<ns A5, With these hypotheses we shov that @and@,
. defined by ‘

- ’a/=.0'(k, m, s; Cu) = (k + en - C, mk'e)ao

and g =& (x, m, . c,) =~=-(k+ a4, mk'a)o).
'ueéucﬁ§Mt o |

»qub;w,/o)>m;rl n o ‘(g.i‘i)
ax;d '%(5','0)<..mr;”-\’. - ',_'(2.i2)

‘ 'by.appeal.to the continuity of qbn(ho,» 0), we deduce that there is at least

. one h: 4n .Oé h: < 5 which satisfies (2.10). In ordgr.to_ use (2.5) and

. ‘ - )

T e ey
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. (2.9) ve define p by

p=(a+ a2 - - (2.23)

we need to i-emg.rk_tha.t a consequence of our definitions of k5(A) and c,"_(A)
. 18 .

- let us now return to (1.2). Our criterion for periodic solutions

is the specia.l case of Theorenm 1:

. THEOREM A, For the solutions of (1.2) satis%g_g :’:(0) =0, &

pecessary and sufficient further condition that x(t) should have period
Prar is %(mr) = O, |

Eence,' 11’ we determine an h'; foi' vhich (2.10) holds, the solution
x(t, ho, 0; 0), or x*(t) say, will have the following properties:
{1) x*(t) Bgriod 2o end x*(o) >0,

| (1) 2%0) =0, =md

(i:l:l) all the sta*iouarjr points of x*(t) are positive'm'a.xima or

negative minima, and it has n of each in 0 S t < 2um,

'Inpa.rticula.rif n=mk+s where, for some A,k>k5(A) and 055<ms

Aka




» {e know that an ht can be found.‘ In (?.) ve. me.tie k, m and v‘a explieit
"'“‘-"':"J v by using the heavier notation x*(trlis m, s) instea.d of x'(t). Eowvever,

| this notation remains a.mbiguous unless we prove h unique and we shall avoid
;“f‘"%‘.“’;‘;.i: 1t here. It w:lll be more convenient to write (x* (t[k m, 3)3 for the class

of solutions of (1 2) having the properties ( 1) to (111); vith this notation we
can say (end this is the content of Theorem 2):

I, for some A, we have k>k5(A) and 0$s<miAk2 then

(x (tlk, m, s)] is not empty; further, there 1s at least one member for which

(x + sm4 - c,.(A) - mk e < x*(O) <(e+sal+ ¢, (A)+ m ) (2.15)

'jg _,

(k + 8ot . cu(A) )" 3 <% 2(t) + x*"(t) < (k +smt + -c (A)-mk‘2 b b (2.16

4 g .- The cla.ss ﬁ already mentioned in §1 was defined in (_) as consisting of those
tad
* AReEY embers of | [x (t]x, m, 8)} which for some A had k >k5(A) ,

0 £s8 <m F3 Aka and satisfied (2.15) and (2.16).

, In a.ll the etove vork vel have restricted ourselves to 'solutions having
" only positive ma.xima and negative minima, that is to solutions vhich describe
! cy'cles. By rearranging our ca.lculatiOns we can show that this is not too severe
e restriztion: any periodic solutions (a.lways vith %(0) = 0) whose periods

:'éare not too long compared with their a:nplitudes do describe cycles. We consider

~ . . v . o e



ax xt(t) with perfod 2mr amd %'(0) =0, whose emplitude x'(0), or

' h: say, satisfies |
CT T L byt o | - ‘
_ - o o b > k5(A) +1+ Ach(A) | (2.17)
oL h: >2 +2 Ac,"(n) o ‘ | o - (2.18)
and | oln : > A'% a4 Ach(A) | | 7 (2.29)

© for some positive A, We then find that
R4 nenberalif % AL -
v ’ ‘ £ . () @[x*(t[k, n, s)}
for suftable k and s, end in the course of the proof we cbtain

n<lA:k2' SRR o  (2.20)

end o .cm m, 8; ch) < x'(0) < 5(1: m, s; ch) A. (2.21)

3 The estimation of partial derivetives and the arrangement of the ca.lculationé.

In order to desgribe how rgpidly h2n and q’2n vary with h° and (po we

sha.ll prove

THEOREM 7. Under the sssumption that p(t) has & continuous third

"deriva.tivel ir p is a given positive number and n = ph3 then, for large h

.
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Ao n) f regn oah

_”S(hq-, %) ) -&roh] 201 + o(1)) 1 + (1)

vhere the tendency to O implied in the O-texms is uniform in n.

' COROLTARY. There is .an Ra( p) such that, vhenever h_ > Ra(p) and
n s phz, qkn J:_I.}_défined and

| 3g, [ <0 .

' In the emunciation of Theorem 7 ve have used the notation

%hm, an) A‘ VN - /3,
gho ) %) aq;zn/gho | a%lacpo /]’

and we sha.ll irrite other Jacobian m&trices si.mila.rly.

It will de anticipated that the Corolla.ry to Theorem T will a.llow us
to show that, in sultably restricted ranges of n and b,y the h satisfying
(2.10) 1s unique, end, correspondingly, that when k, m and & are suitably
restricted the class (x"(t|k, m, s)} has only ome “la.rge member, which we
ghall symbolize with x*(t]k, m, 8). When we try to give a clear emunciation of

.. vhat we have anticipated we have a-cpoice over our use of the parameter p
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and the corresponding A = (p + J.)a)"3 of (2.13).' In our estimations and in

"~ their a.pﬁlication to the existence statement of Theorém 2, carrying these

fa.rameters gave some extra generality at very slight cost. When we interest

ourselves in uniqueness statements, however, we must choose between working

- with e fixed value of A or working vith & range of A and then eliminating

A by teking suifa.ble maxima or minima of the expressions we obtain. The
second procedure of course gives a scmewhat better result but if we followed

it we should have to introduce extra details into our emunciations and proofs

which would obscure the method ’by more than the improved result was worth.

- We shall give Lemma 17 an enunciation involving A and comment again after

that lemma on the possible use of the parameﬁer, but in the remainder of the

paper we éhall_ simply put A = 1. In particular we shall establish*;

THEOREM 8. Suppose that m is a positive integer. " There exist

constants k and €, such that for any integers k and 8 satisfying
_—— 6 — k% _ :

k>kg  exd 0ss<nsk

fI am grateful for suggestions by the referee which have made the enunciation
of Theorem 8 much more -il1luminating than my original form. ,
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- if x'(t) has perfod 2mr, if %(0) = o0,

".13,.

there is, under the assumption that e(t) has a continuous third derivative,

ome and only one solution of (1.2), sey X'(t) = X*(t|k, m, 8), for which
(1) x(t) hes vertod 2ur, |
j (u) ;:*(c_i).s= 0 gn;_a X(0) > (x - Ch)a)- and ‘.
: (111) | a.'L'L the stationary p. oints of Ax*(t) are positive maxima
or negative minima ard there are mk + s of each in 0 S t < 2uT.

-This unique solution satisfies

(x+ent - cak?)e < X"(0) < (x + smfl + k) (3.1)

 Further, all large periodic solutions of (1.2) which have %{0) =0 and

) have- : x(O) large compared with their periods are of this fbrm: more precisely,

| m‘lx?‘(o) =1~ >max (ks, 1 +-23 ch) | (;.2)

‘m<lt Moy -1 éh}'a, I ¢ 5

then there axe & k and an 8 with k>k6 and 058<m<k2 such that

xi(t) = x*(t[k;, n, s).



If we c@pa.re the enuncié.tion of Theorem 8 with that of Theorem 2,
wve potice -that we now lay heavier requirements on e(t) than the- continuous
différéntiability dé.ma.nded‘ before s but that the restriction m = Aka (here
- of course with A. = 1) is the same as before. Although it was suggested in
: (.2.) that we should have to subject both e(t) and m to heavier condition#,‘
I bave since found that th_ere is a; choice of hypotheses. Alternative forms
of Theorem 7 are ‘briefly cdnsidered in §7, and the corresponding forms of
Theorem 8 in §8- for Theorems 9 and 10 e adopt the continuity of e(t) out-

' :r:lght as our hypothesis.

On the basis of Theorem 7 the proofs of Theorems 8 and 9 are short.
 For the proof of Theorem 7, ve first, in §u, £1nd estimates for the elements of
. %hl’ q;l)/.é‘( o %)+ If b, islarge xt), = x(t, b, 0; @), decreases
ohctonically to O in the range P - q;l, hence it has an inverse function
' _. vhich increases as x decreases in the range h 2x 20, If for this

t\mction we write t(x) we bave t(ho) 9 £(0) = ¢ Fram (2.5) we deduce

that ’ ' ] gﬁa-ruf /.-u - AL
_ , : _ h

[ Ja,)'ﬁ.tgs. aS'u» L ho X N {\/’ / ocZ,J -Ml-lcft‘

. oy ) i " Sk ’ '
R fz (e - = 2(3ptetxaxnf b, )
tdoe x _and if we wvrite x =h 'j this may be rewritten . ].....rj ""j e "{‘“

. . /’_f & Al-ft,u,jn(’

AL P ,_.,,;4\

9he notation t(x) is abbreviated; ve should write t(x; b, q>°)- This point

-

et e b L [ P
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is relevant since, when we have written x =h og ) Ve shell.take the license

~ of writing

.Bt 6t(h &) | 3 .
Eo or T for {E; #(#ogi L q>°)}§;<P° .

Once we bave the estimates of §4 we can write dovn similar estimates

- corresponding to other ranges of: te In §7, these are combined (by multiplying

Jacobian matrices) to give an estimate for the desired ‘§§h2n, qbn)/ Mgho, Q).

In order to effect this combination we need to have estimated (in §5) certain

:lnl;egra.ls which a.rise, and to have obtained (in §6) estimates for the products

-of matrices.

k. The estimation of derivatives of h) and @. We know that, for large

ho’_ both’ hl and @ &re differentisble functions of ho and Py In tnis

. section we sho_w that there are simple estimates for their derivatives. As nmight

be ex,pected the estimates obtained by formal ‘differentiation of (2. 6) and

(2.7) are valid; with the exception of the estimate for ahl/ Bcp they are accurate

enough for our purposes.

It 18 to be observed that the integral in (3.!;) is improper; to Jjustify
dirferentiation under the integral sign in Lemmas 3 and lL ve esta.blish by an

easy appea.l to the principle of dominated convergence

A e A ki LEAMMA l. If gle ? @) has a partial derivative with respect to A, which

is continuous jn ¢ and )\ for 0S¢ =1 end A in some range, then for the

A

. ) € LT . . .
- : . R . .
. : .



seme set of (g, ).)

G(;, x) f (1- ')'%s(g' x)dg'

has a partial derivative with respect to x, namely

G (;, x) = f (1 o % T, Nt .

‘m'mimél _Fgr_ Osgsl, h >r andall g the function

t(n g; q)o) has pa:rl::lal derivatives with respect to h, and q>o, and

A,these are eontinuous in §, b, and T *

| l‘_t' 18 clear that t(ht) 1s defined by
X= x(t; h,, 0; <p°) -ht =0,

When g £1, 3X/3t £0 and our essertion follows by the standard’ implicit
function theorem. Evidently dt/3h, is determined by

&(t; hot 0; q’o) %; * %— -£=0, | : (k.1)
: (3

and 3t/ g, is deternined similarly.

If §=1, then t =g forall h and g, and therefore has partial

derivatives, namely-

3fm, =0 ama dtfag =1
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' To show that these derivatives are continuous as § —1 (necessarily

from below), we write t = 9, * 1, vhich makes g = o(1) » @and note first

© - that

‘, 3t by, 03 ‘(po) =(Xeq) +o1) ) u,

-

~ .and, secondly, since ax/aho 1s the solution of u + 6x2(t)u =0 for which

wq) =1, %(q) =0, that

retsets of Lo

.. ¢ 4[&.&; ')'Iv
«eeulertd

diof dicdentit =1 - (28 e A
?c&ucttri_:}  and | nt = h§ + %[':E(q)o) + _Q‘{l))qz .

Substitution in (k.1) gives us that dt/3b, »0 &s 7 -0. Similarly

: .Btlacp'o -1 as 7 0.

LEMMA 3. For large ho’

% = 1+ g )n3 + onTh) - | (8.2)
and % = -k gyt + 0. | o (8.3)
o .
If ve rewrite (3.4) as |
. . o |
- b le(ng) - g = ./‘g (1- i')'%»- Ce(ge 3 By @o)l‘% a*, - (k1)
where
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He's by ) =1+er + e+ pdo o oo [ pletngmar, (k)

o

‘ _ 1t is evident that Lemma 1 can be applied to the improper integral; we obtain

~ Where

Write

3t o -2
h°.§5° +(t(h°§) - <p°) =1 f_g‘(l-g')"i- e 2. Eo‘ dg" (hf6)

. 1
- : 1 n "
§ -at. I-t _fe' ple(ng™)) ag” -

O
| | | ri | :
| 13t
R = max
' Osg=1 &; ’

. and suppose that n is attained vﬁen £ =g, Put g =¢ o In (%.6) and we find

. whence

. hou + g(i:;l) = g(h;") +.g(ph;3)

Now put ¢ =0 in (4.6); we obtain



-

: 'lfog’i +°l'°°=g(§;h)_
which gives (4. 3)..

Finally, by writing $o=9 and t=g¢ in(2.5) and changing the

varisble of integration to ¢, we obtain

" =lh& 2h fl {;(h )la
h1 o = “BoJ o PHHIRELIIAE .
If we .differentiate this with respect to ho and use (2.7) in the form
g =% e Falgny? + oty
" we obtain (%.2).

1BMA b For lerge b,

| o |
- / g, HTIKBIEE + 0(0)

Er

; 4
= ] + p_(ho ). |
By dififeréntiating (l(»'.h) with respect to @ Ve obtain

- | M -2

3t - f » 4,2 ¢
-_ho(géo-l)_ -3 g(l-g'). r. g@;»di':

wvhere



. ) . 1 -
1 ny, O "
§-o rip J sear B

- If now we write

ot
p= max -1
o &

we £ind

",u-'g.(#;"), o | (&.9)

- -and the proof pr_oceeds similarly to tha.t of Lemma 3,

" 5. The estimation of [ ¥t)x(t)at over the ranges (cpl, q>3) and (q;l, q;j)

In each of the ranges (<pl, qb),_(qb, @5), (cp}v %) and (%’ @5), x(t) 1s

'monotonic, and it takes the value O at one end. It will be convenient to

vrite t(la)(x) (25)(x) t(y‘)(x) -and t(hs)(x) for the inverse functions,

that is, we think of writing t(m‘)(x) for the t(x) of §2 and then generalize

‘,.this notation. We write

X |
h-
go=J o th e,
R | S N
it will ve observed that r(O)*%tD’a.nd fo 'r(g)dg'-'-];'tr.

LEMMA 5. For large h,
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40D gy g w ) # et
t(23) (-h2§) = qh"' h;l 'r(&) + g(h;h))

P gt coigh

£

&

N 9 (n, 1) = g + 12 «(5) + o2,
In each range ve use t.he }élevaﬁt gnaloéue of (3. 2l-). -
'I_MG.vForlarge h, |
_ f% ﬂt)i(t)dt = Q(ha) . |
e % - _
-' We have .. -. | |

f % B(t)x(t)at = -h, j o'b(.q;a-‘r(g_)h;l + g{h;“)}ag + b, f o + -:.(g)n“i + g(h;l‘)}ag
| | - - - | (5.2)
= "‘_‘au_’(‘“a) +0 (1)) + n,(3(q) + (1)) = o(n)

- LEMMA 7. | Ie p(t) has a continuous second derivative, then
‘ % L X ] |
S g K = 37T (g) v2 ()

as ho - , uniformly in e




' We have fron (‘5.1)
, \@3‘- ' , M - W ._1 . .- _1 ’ 1 -
j % Bt)x(t)at = _haj o [((a) + P(q,)e(e)n; 3-{b(q,)-B( @) v(£)n_ )+ o(n ™) Jag
| %5-23(@7 . -J: wh;" +0(1) = %"T.?P. (g) +2(2).

IEwA 8. If u(t) is periodic and has a continuous second derivative,

if 7 1s s positive varisble and n' a varieble subject to O S n' € v, then
cultg - a - wt)-ulty -t )ty +q - q7) 4 u(ty +n + ) = kule)ng + on)

g5 10, uniformly in t.

IEMMA 9. If p(t) hes a continuous third derivative then

| f E Koxe)a = J Hapust + o2l

_a_g h°-> o, un:;formlyin q;).

. Evidently ve have
, % ’ .1 - A -1 h
. f g HOIXBIE - -hgf o Blog - 3anl - «(e)n” + o(n ") Jag
| . . | |
= -hofo Mq>3 - i-c:rh;l - ‘r(g)h;l}dg + g(hf),

and similar estimates in the other ranges., From these we

1)
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bbtain, by tamgg 6= §,3-h;1 and 'ﬁ' = -:(g)l_z;i in I.emma 8,
N . L | |
fﬁ He)x(t)at = -hofo h‘i»‘(q>3) . %wn;l . .'r(g)h" ag + o( )
".".; T Kougt + onY)

6. Approximations to matrices. In this section we consider some estimations

of products of matrices containing a large parameter h. We shall apply this
. work In §7 by teking h as b, or hy. The matrix

2N
S r:l.-l-A_c'g(h'll h+°( ) |
. = L (6.1)
S 22+ b 2) 1+g(h-")

is typica.lvvdf the matrices we shall meet as factors.

When, as 1n ( 6. l), we have a sequence of matrices involving error terms

depending on h we shall sa.y the estimate is uniform in v 1if the constants

implied in the O-terms and the functions tending to O dmplied in the O-terms
can dbe chcsan 8o as not to depend on v. We shall sa& that the matrix

= (a ) 1s dominsted by 4 = (A J) and write
2

<2

4f, for all 1, J, [a | = AiJ
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B : n
It will be convenient to use the notation H1 8, for the product
~ L. . . F
with the lf.acto.rs in the order & 8y o0 By |
. If, £ '
~ LEMMA 10. If, for all v,‘g.v@gv and }3V<<}'5lv then
n

B -Ta < Loz I 4

IRMA 11, is & 2 X 2 matrix with distinct latent roots

, i c
;,1 and 12 then ‘Cf=ng+gNL where

= O -y O - ay) - O (6.2)

IE

= T /0y - ). (6.3)

IEMMA 12, Suppose that g, &ze matrices satisfying (6.1) with the

‘estimate uniform in v and that [cyl fc¢., If K is a constant, then for large

hggc_lbn<lm .

X 1+9_(h5) p -hh-l-g(h})
Hl,gv= | - >
MR -2&71m’2(1+g(1)} 1 +0(n”

with the estimate uniform in N.

The hypothesis implies that there are a function q(h) tending to 0O

' end & constant C such that, for all v,



_ N .
31/. - | £ ¢-
L 0 1 0 1
and also
"0 1
- &y < S-
o 1 2 Hn~2
vhere
28072 + 2&m(n)n~2 1+ et

By apblying Lemma 10 to (6.&) and (6.5) respectively we obtain

X

. 1z c-h';h . !
N V1Y |
Ie,- &g -
g § 0 1l 0
and
1 0 1
Y |
Hs«,- , <g- 2
20%h"

vl eem? 2

.0

(6:)

(6.5) .

(6.6)

(6.7)
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" The 1§tent Toots of G are
"'31-1+‘A+‘ch"‘_ e “ 12=1-A;ch°";
"_nvhevre A~y (eac) . 1> as h—>;o._ We. see that
.’zg - 1 +m . énif" + %NzAé +‘Q(h'5)
and “ =1 m + e + 1PA2 ;k_o_(h'B)‘,
‘Aa;nd';zgnée,_ ;é'thenogé.ﬁion of Leuma 11, .‘
':'?n’_‘: tems + 9-‘5")1/(2& - x+ g
= (NA - o+ _o_(h‘5)i +(1-m+ cmx"ll + g_(h"‘)]
Cere ot |
S \ follg?rs that '.the d:la’gbné.l elements of ‘S,lf are eachb

Yo 1+ Q(h.3),

. o+ « 1+ . Ch”
(tn gy *1+f -0n
‘and that the elements off the diagonal are

: rx(eh"‘ + en(o)n™) = e + _o_(h“"’)_

0y

e~ o




" that

-2

and o Ly [2 + ap‘q(h)h'a =252 1 + o(1)} .

_Our assertion nbw fol_iows from (6..6) and (6'.7)».:

IEMMA 13, _Suppose that N = N( h)' <Kh, vhere K 1is & constant, and

#+mrﬁ e
%‘ \ -20m201 + o(l)} 1 + o(n~3) ’

vith the estimate uniform in «. If L 1is a constant, then, for large h

2

and sny q satisfying q < Lh°,

ek s
& - R ,
20w 201 + o{2)) 1+ o{1) |

‘with the estimate uniform In q.

. The estimate for B implies that there are a mnction q(h) tending

to 0 and a constant C such that

- b_‘v é,li‘ ’ | Vb(6°8)'



vhere
1+ » a(n)n~>
‘P‘ = | | . .
20m™2( 1 + 7(n)} 1+cn>

By.applying Lemma 10 to (6.8) we obtain
| 1 0 1 o
Q-1

- < & . : (6.9)
 xk=0 X -2 '

2N 2 1 2oWp~2 1
| m latent roots of g are

3,1-1;5_%.@‘3 and x2=1-A_+0h‘3_:

wh;re A= g(h"e). ‘We see that
;g = (; + 'Ch"})q +q(1 + Ch‘})qili_A + g(gaAa)

and | l . é - (1...* ;h-z)'q . §(1}‘+ ,Ch,.,j)q-l A'+ 9(;2A2)
and ﬁence, 1n:the vnc;tatiOn of Lemma 11,
£, - (2‘9_(1'7!- cn")"".1 A+ g(qaaa).}/(%)

| ~q+ .Q(qh'l)' + Q(qu)l =q + o(q)
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[N PR

. - . .. q
+ - +
T 8y = (2 =200 4y

= {aa - can™3 + ofan®)} + (1 - qa+ can™3 + ofa?)

-1 42(1).

These results allow us to estimate the elements of gq' and our assertion then

follows from (6.9).

. - In the final stage of the proof of Theorem 7 & number of matrices of

the form ' : ' ' .

1+001) o(u Y

‘ @_(H) =

-En~2(1 + o(1)) 1+ of1) |

will occur. We note that, in this notetion, Lemma 13 asserts that

H 2’.‘ = g(a gﬁq_). For these matrices we shall require

1RO k. If K 1s a constant and O <E, <Ka’ for 1=1,2,

then

) + () = gl + K)

(6.10)



- T _‘131& combination of estimates. Whenever the derivatives are defined
' we shall vrite

Co n 12 q’i .;i.(h > @)
P Sl s(n y &4 ¥ = X—_Thi b s
: -~ 1-1’ Qi-l - ) o’ 90

: 11: is evident tha.t the results of Lemmas 3 and 4 may 'be rewritten

1+ g3 + o) 3f Ko + o<h'5)
- | \ :
- 3an2 + o(n?) 1+ 0(n")

We need to estimate the elements of
o
Yoo u Il 2, -
’ vl _
When the matrices on the right are multiplied together, there 1is a.pproximate
cancellation of the contributions to the element in (1 2) position of the
" product. In order to take advantage of this we group the factors and define

nmatrices gv and X which we shall identify with those considered in

§6. First we take the factors (apart from the end ones) four at a time and write
Sy = Byyry By Bav-1 By f

Ve then tske the ¢ in groups of N, vhere N = [ho/co], and write

1)



e
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o

X |

2-‘IL g .
kT Smora

~ When n is even, we write %n-I=Ni+(1)vith 0sq,0s <N and

< 1 q-l | |

When n :l.s oddwewrite %(n-1)=Nq+z with OSQ, Os't<‘N and
obtain - |

Haa‘v’l‘zn" I,L-Sm+>.’ H .1.’:('-’91 .
As :I.s suggested by the nota.tiozx, the factor matrices grouped in B
correspond epproximately to a period of p(t). Similarly, the notation g

auggests & cycle, it will be observed, however, that 3 corresponds to the

interval Ry sts le-l’ not Reyls sts Yy vhich we have defined as the

- vth cycle,

LEMMA 15. .lfsr_l_s_ b,

1+ o(r2%) .éh?f g KEME)a + o(x)
'gsyag \ ] (1.2)
: » -en? + o(nd) 1+0() |



o :

o 1+ o(h' ) %h? f:z Ht)x(t)at + _Q(hf’)A |
Bsmy = ST | | : e (13
-on? + O(h %) | : 1+ g(h;")

Evidently the method of Lemmas 3 and 4 1s applicable to the estimation

' -1
of the elemenf:s of zp ‘.‘é(hl’ %)/, @,); e need not repeat the work
here but can check the signs of coefficients by formally differentiating (6.9)

| &nd (6.10) of (2). We obtain, by inverting this matrix, the estimate
[ + pg)n;> +»g(h'2'h) E f @ p(t):jc(t)df- + 0(13%)
et 4 o 2.4 alp=dy o | o
- d by 4 0(ny) - 1+ O(hg

Similarly, from (6.11) and (6.12) of (2) , We can check that

1- p(@n 3% o(nghy) sn;’f Zp(tm(t)awg(hf)

- o) _' 1+o(n2

Direct multiplication end use of the estimates h- = h + o(n7 5) ,

2
h;’ = b =3 O( ) now gives (7.2), and (7. 3) is established similarly.

. IEMMA 16. I£ 1 1is a positive varisble and u(t) is a continuocus

. function with period 2r for which
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er .
~ _ v .
j o u(t)at =0 then, 1f N 1is defined as the greatest integer in 2r/y,

K-l

- nz u(t + vy)
o ' ﬁ w0 ‘

tends to ‘0 as 7§ -0, uniformly in ty e

Proof of Theorem 7. We recall that we are now assuming '5(1:) continuous.

First, multiply the matrices on the right-hand sides of (7.2) and (7.3), and
then apply Lemma 9 to estimate the integral occurring in (1, 2) position.
Secondly, replace the error term Q(h:?) in (2, 1) position (whose accuracy

cannot be fully exploited) by the coarser of hga); we obtain

d‘& Wl f

| 1+ o( ) | - %aﬁ(g)h;" + oty
S =By BB, - | .
1T B R -2¢rh + o(h” ) 1+ g(h;")

. In this estima.tg write hlw-h for. ho and Byl for <p5; we obtain

b | + o(hlw-l}) - hbﬂ' P(‘aw-l)hhv-h o(hlw-h)
N | o[
-2&‘h:w_h o(hhv__h) l N o(hh h)

& result which we rearrange in order to discuss 2 .

If v varies in any wa.y subject to vy = gn = 1;;;113 the arguments leading

to (2.8) need only s1ight modification to give



5
By = % F 280y - Dt + o0AD) + o (1.9)

When v ldes in the range 1 & v 5 N, ‘the second error term of (7."5) is the
more important and we obtain '

N %-1 =gyt 2 a’fy-l)h;i + g_(l;;}), | _ (7..6) |

vhich gives, since p(t) is continuocus, that o (Hw-l) ==.1';[q>3 + 26’(v—1)h;1] + o(1);
if this last is used in (7.4) and by, everywhere replaced by h  and

suitable error terms we are led to
' . -'- Co. . . 1 - o ’ -l - -
L1 Q(hoh) - joT 1>'(<1>nj + 2a(v-1)n] Jhol‘ + g(ho"')

c = o o - | R . "-(7.7)
~y
w2 A—h;"‘ + _g(h;a) 1+ g_(h':‘)

If ve write u(t) =.';‘>(t), q = 2511;1 and ey =- %B’ﬁ;(q:.) + 2&'(v-1)h;1} we
obtain from Lemma 16
X D | |
vl _— - o ‘
If, further, we write ¢ = %Gﬁr max | }(t) | eand idenbify h, with the h of

Lemma 12 ve find that, at least for x =0,

1+ 9(6;?) o157

P . | . (1.5)
2&w P+ 1)) 1 +o(nz3)

1)
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 When V>N, wewrite v =N + Ay vhere 1= A £ N, .a.nd rewrite (7.6) as
- +20(r - B>+ o(n7D

Uy-r ™ Umc + 3200 - Uiy + omg);

ve deduce that'
Ca . = +28(n - DpL + o(173)

RUy2 " U + 3 - M8 T2
uniformly in K, and, by using this instead of (7.6), £ind that the estimate
1(7.9) is valid for k = i, 2, eeey @ ~1 as well as for Kk =0, and uniformly
in K. - | B

. A similar argument gives

) -1_ 1*.0..(11;3) | Q-(h:)})
).Lli Sxgt, | ' N d
: v-2b‘1h;2(l + o(1)} 1+ Q(h:,})

" the only difference from the ergunent leading to (7.9) being that, since no
analogue of (7.8) is available, the error term in (1, 2) position cannot be
reduced from g(h;}) to g(h;’}). This 1s of no importance because it is sufficient

" to use the coarsened estimate conveniently written, in the notation of (6.10) as

¥ | : ’ ) . )
I sy 2= gleon. (7.20)
A=l | | |
‘Whether n is odd or even ve have N EN +2< in, and therefore

Q< imy /(ho -.Vm) = _Q(hg). Evidently the hypotheses of Lemma 13 are fulfilled



and we 'obtain

gl | o
M p =g (e, " (7.12)

K=o

i nnai]y, for n even, it is clear that we have

BonBon 1 lon 2 T8 (g‘zr) | . (1.12)

and o m=sda), | -~ {1.23)
‘and that if we substitute from (7.12), (7.10), (7.11) and (7.13) in the

right-hand side of ( 7.1) Lemma 1% can bé apﬁlied repeatedly. If n is

odd, we proceed similarly; in either case we obtain NZn =g (&) ) which is

‘the assertion of Theorem T.

' Remaik on alterne.tive hypotheses, If we vary the hy'potheses on p(t)

ve obtain better or worse estimates for the elements of gv The critical
-element 1s that in (1, 2) position, since 1t s the product of this and

"2_0’1132 which determines the size of M - 12 for C. Under thé assumption that
p{t) had a coutinucms third derivative we obtained (7.7) whose critical element
vas ¢ h + o{n_ We might say that this element vas effectively of h;h)

| ~ because, on account of}("(.B) s the sum of the terms cvh;h contributed _o_(h;3)
instead of Q(hza) to p. and we obtained the same final estimate for Moy

as if we had started with a temm _g(h;") I G



~ dokn

k2.

.~ ' If ve essume sbout DP(t), es in (2) and (3), only that it hes &
" contimuous derivative, Lemma 6 shows that we obtain an estimate for Ly

-_v:lth a crit:lca.l element o(h ) Working from tuis estixnate we can obtain,

1f we impose the restriction n< p'hﬁ, an estimate for -}ifzn similar to

that of Theorenm T; here again we are led to the corollary that, for large

Bos 3q,,/3n, < 0. : | S

If we éssume that p(t) has a continuocus second derivative Lemma T

shows that we obtain an estimate for g‘v whose critica.l element is effectively

o(h"}) We can now carry through simila.r work 1f ve impose the restriction
n< p"h

8. The un:lgueness of x*(t|k, m, s). We now return to (1.2) with an even

e(t) and refine the results of §2 by explolting the Corollary to Theorem 7.

I1EMMA 1'(. Corresponding to an assigned positive A there is a -

k6(A) which, under the assumption that e(t) -has a continuous third derivative,

has the following properties: if k, m and 8' are integers satisfying

k>k(A) e2nd 0Ss<ms= Ax® there is one and only one member of (xx(t|k, m, s)]

for which

2#(0) > (k - 4, (4)) -« o, | (8

say X:(tlk, m, 5). Further, X¥ (t]l;, m, §) satisfies (2.15).
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-h}-..
| " Define kg(4) = m[ks(Aj, ot Ra(p) + AC (A)] vhere, as in (2;13),’
o= (A + a2, |

8ince k6(A) z k5(A) we know that when k > ks(A) the class
{xx(t]k, m, &)} ie not empty and that at least one member satisfies (2.15),
and a fortiori (8.1). To see that this member is unique, we note that, if

b = x*(0) satisfies (8.1) and n = nk + S, we have on the one hand
h_o > (k6 - Ach(A)) 2 Rz(p)
apd on the other, by use of (2.1L),

n < ok - AG, (A))% < 2.

. These inequaliﬁies‘show that cpan(h o? 0) decreases and that the equation

q’an(ho’ 0) = mr which ‘hAa.s.a.t_ least one solution has Just one.

Remarks. (1) As mentioned in §3, we shall in the sequel simplify our work

. by choosing A =1; we may then treat k. =k (1) and ¢, = C,(1) as constants,
6 6 L % _

If we choose the alternative course of carrying A as a parameter and taking

maxima and minima our work is much simpler if we can assert that kG(A),‘ and

"other functions s have inverses. On this account it is convenient to assume that

Cu(A) » kS(A)' and Ra(p) are continuous and (strictly) increasirg in their
argunents. To make this assumption involves no loss of generality: we need only

observe that the essential properties required of these functions when we intro;.

duced then were that they should satisfy certain one-sided inequalities, and

~
.-
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that we .can, if necessary, re-define them to.be continmious ‘and increasing
vithout losing these_ properties. |

(ii) Tt vill be clear tha.t, corresponding to the modifications of |
Theorem 7 mentioned in §7 we can o'bta.in modified versions of Lemma 17 (a.nd then
of Theorem 8, again with a choice over our treatment of the para.meter). When
we know only that e(i:) bas a continucus derivative we assume m S A'k;

vhen wegknow that e(t) bas a continuous second derivative we essume
mE A"k, o
. In the remaining work ve shall require that e(t) has & continuous
third derivative.
. Proof of Theorem 8 The existence and uniqueness of x*(t[k, m, s) for
g:lven k, m, 8 follows from Lemma 17 if we take A = 1.

Ir‘the solution x (t) satisfies (3.2) and (3. 3) it is clear that
xl(t) satisties (2.17), (2. 18) and (2, 19) with A =1, which implies that

therearea k and an s forwhich

l) u-"v[‘ét—-ju.l{, . : .
x’(t)@)[xf(tlk, m, &))

and (2.2(-)),, that is, m < ka, hold, If we slightly weaken (2.21) and

rearrange it we obtain

&'lx*(0)+ch>k>a)1 *(0) -1-0,‘
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and hence we. have k >k6. and x*(o.) >(k - C“)a) from (3.2). Lemma 17
novw gives x'(t) = X*(t[k, m, s).

COROLTARY 1., If k2 k6, 0Oss<ms k2 and, for a positive integer

Hn= nn" and s = yst, then

X(s[x, 5, 8) = e, a, o).

 COROLIARY 2. If Hq, O) is a fixed point of T of order m on the
‘a=-8xis and if | ' -

’ d)pmax(k6+1+ck,2+gch) | | : (8.2)

»Im<(a')'1af-l-ch)2 o (8.3)

there are a k and an s with k > ke and 0%8<m<k® such that

o= x*(o[k, m, s);

Proof of Theorem 9. We xneed only rename X*(t|k, 1, 0) as x (t) to

obtain ocur enunciated form from Theorem 8.

9. The arrangement of fixed points. In this section we shall combine our

uniqueness results with the work of (..3.) 50 as to obtain Theorem 10. In (2)



we bega.n from the result that, when* k 2 p, (1.2) bhas at least one solution

xk(t) for which R LT e
(1) =x(0) >o, tk(o) =0 and xk(t) _period 2n',
(19) xk(t) = x(er - t),

(:lii) ’ﬁ‘(t) has, in O £t <2r, k positive maxima, k negative

m:lnima a.nd no other stationary points, and

(v) (k- %) w < *g (6) + xi(t) < (x + H)"

 This was introduced as a special case of Theorem 2 and of course did not use

Theorem 9 by which it is superseded for large k; we simply toock xk(t) to
be a member of (*(t]x, 1,.0)) wvhich satisfied (iv). Having chosen a partic-
ular xk(t) ve vrote a  for xk(o) and F, for the point (ak, 0) or

the (é, b) -plane, We continued by showing that (1.2) has periodic solutions

for which the difference x(t) - xp(t) has simple properties.

Theorems 5 and 6 are stated in terms of fixed points. Here rather than

Theorem 5 we need to quote its Corollary that if the integers k, m and s

satisfy

k>p and 0=ss<m

*Here P 1is a constant and has no cdnnectiOn with the p(t) of the early
sections of this paper. This is a suitable place to recall that some features
of. the notation of fe) vere modified in (3)
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" there is st least one solution xx*(t) g_g (1.2) with the properties:

(1) r**(t) has period 2,
(n) :’:**(0) =0,

(:lii) all the stationary points of x**(t) - (t) are positive maxima

or negative minima and this difference has mk + 5 of each in 0 5t < Zorr,

end

| (1v) & s x**(o) Sa ..

We shall writé [x**(t |k, m, 8)} for the class of solutions having these

properties, In (3) we v:rote r**(t[k m, . s) ambiguously for such a solution
and were not incomrenienced since all our emphasis was on existence problems

but we 'sh_all avold 1t here. When ve know that (x**(tlk, m, £)} has only

“ope member we shall vrite x*%(t|k, m, s) for it.

If, for fixed k and wm, we consider all s less than m and prime to

it, the points of abscissae (x**(0]k, m, s)} are fixed points of order m

-lying on Fkai-l maent‘ly if we let m vary we obtain for each m at least
- ¢{m) fixed points of order m; whether or not there are exactly q{m) for

" each m, we showed (as Theorem 6) that it is possible to choose a fixed point

P, to correspond to each 1rreducible fraction s/m with 0 £sm so

that P, 1s of order m and that if s/m < &'/m* then P_. lies to the

In the course of the proof we showed that if x(t) is the

" solution COITeSEOndin,’{ to Psm. then x(t) - xp(t) has mk + § positive maxima

in 0 St < 2. We note that by allowing equality of s and m 1in

0 S s8=m we provide for the definition of P

01 @4 Py (vhich must evidently

-
-



e —— . b

-48-

be E and E respectively if these points are uniquely determined).

In addition to these theorems we need to recall from (3) the idea that,

vhen we consider a function u(t) which

. (1) bas only positive maxime and pegative minima in the interval

- [0, A)

(L3
“ .

s

~ about the line (0, 0, t). This function is connected vith the number, say

2y, .of stationary points of u(t) in [0; ).). by

(11) has u{a - t) = u(t) and | .
(1i1) bas & maximum at t =0,
Ve can define a function o(t) with ¢(0) = O which measures the rotation

of the curve

| ,Vn,_ii‘“(t_), n = 4(t), ;ét,

o(x) = 2¢(3) = 2ry . | (9

Further, if v(t) is a given function we can under similar conditions define
9v(t)’ to measure the rotation of T ebout the curve (v(t), Wt), t). If
u(t) - v(t) has a positive maximum at t =0 ~and v({x - t) = v(t), then

under the conditions

ﬁa(t) + u"(t) >K, | _ : | 5 (Q.é)

and -G?'(t) + () <k, R _ . (9.3)

- s g o o oo
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vhere K 18 a constant, we can compare @ and 6, and show tﬁat
’Ov(fx) = g(41). 1In our applications to (1.2) we take u(t) to be a solution
of the equation and v(t) to be the special solution xp(t).

Finally we need to mention explicitly that, as appeared in the proof

.of Theorem A, 1f x(t) s a'solution of (1.2) with perfod 2mr for which

3(0) = 0, then x(t) = x{2mr - t).

IEMMA 18, If

s 5. 5
-“.‘._”F""(P*a"ack’ ks*gf%%*acu)

k

0 S'.sv<m s (x -g.- c,;)2

 then (x**(t|k, m, s)} has just one member, namely X**(t|k, m, s), and
xex(tk, m, s) = x(t]k, m, s5).

Since k >p, Gox(t[k, m, 8)} is pot empty. If x*(t) denotes any

(fixed) memder of this class we have
x'(0) a"ak >(x - o

and therefore our hypotheses imply (3.2) and (3 3) of Theorem 8. It follows

‘that there are & k' and an s' such that



ST s

< () = x(e]x, m, 8), | | B (9.4)

and this gives

Kk -2
x'>k-2-ch,

0

stnce, by (3.2), (k' +1+¢)e> x*(O) >(k - %—)m.

We note also that (2.16) with A=1 glves
&*2(1;) _+_xﬂ"(t) > (k' - -3 c,")l‘m‘l .

Write u(t) =x'(t) and A = 2mr, then (9.4) shovs that the conditions

'x'equu'eu ior \7.“ wre auu;u;cu, aud ucuce
o{om) = (mk* + s*)7.

Write v(t) = xP(t) _then the defining properties of Goex(t|x, m, 8)) glve

us'smlarly
8 (um) = (mk +e)y .
' - b b
If we write X = (p + 5) ® , Wwe see that
3 (t) + u¥(t) z(k" }ch) > (k- 2 2c,‘) o > K,

that is, that (9.2) holds. Since, evidently, (9.3) holds, we have
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O(nm'). = ev(mr) or mk! + g' = mk +_s; this 1mp11és; .' b;f tr;e ‘use of |
0%8'<m and 0Ss8<m that k' =k and 8" = s, . and hence (9.4) gives
ﬁs that x*(t) is the only member of (x**(t|k, m, 8)] and our result
follows. 4 | '

Proof of Theorem 10, Write ‘Cs for the integer which satisfies

Cy &k +20, <05+,

. = and suppose that

x>mx(p+i+dc, K +3+20,b+Lc).

) ’ . " n
- buppose that 2= m & (k - C5)' and P 18 a fixed point of order m

.on the segment Fk Fk+1' Write «a for the absclssa of P. Then since _

..a>ak >(k - 3o

Ve see that ¢ satisfies (8.2), end, since m evidently satisfies (8.3),

'vé have that there are & k' and an s such that
a-= x¢(0]x', m, s) < (k' +1+ Ch')m.
We deduce that

"'"“,‘3"'"&”‘“(1’*2*3"1‘» ks*%*cvgf*gcu)

-
-
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m=(k ) °5)2 < (k' + g + g, - 5)2 < (x* - gi-_c,‘)2
axﬁ this ﬁpliés thé.t
xee(t|k?, m, 8) = x*(t[k?, ﬁ; é)
ﬁth, in particular, |
.k~<x¥% (o]xr, m, s) < a'k-i-l | .
ﬁmgkék;gﬁ - |
a= x*(ojk, m, s);

" It follows that there are exactly ¢{m) fixed points of order m on

Fka +1 and the set of these must be just the set of the Psm introduced in

Theorem 6. Since the latter satisfy (111) of the enuncia.tion of Theorem 10,

there is no clash in our uses of the notation and Theorem 10 is proved.

"I should like to thank Prof. J. J. Mahony for his comments on successive -

drafts of §l.
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